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DIFFRACTION OF ACOUSTIC WAVES

ON THE LEADING EDGE OF A FLAT PLATE

IN A SUPERSONIC FLOW

UDC 532.526S. A. Gaponov and B. V. Smorodsky

A scheme is proposed for calculating the intensity of the acoustic wave field generated by diffraction of
a beam of acoustic waves on a sharp leading edge of a flat plate in a supersonic flow. This wave field
is shown to be a functional of the mass-flow amplitude distribution in the acoustic field at the level of
the plate surface upstream of the latter. This distribution can be found on the basis of measurements.
The discontinuity of the normal-to-plate component of the velocity perturbation on the plate edge
plays an important role in determining mass-flow fluctuations along the plate. At large distances
from the leading edge of the plate, where the diffraction wave on the boundary-layer edge degenerates
into longitudinal acoustic waves, the amplitude of mass-flow fluctuations decreases with increasing
distance from the leading edge and depends on wave orientation.

Key words: boundary layer, hydrodynamic stability, receptivity, laminar–turbulent transition,
aeroacoustics.

1. The problem of diffraction of acoustic waves on bodies immersed into a supersonic flow is considered in
the present paper in view of studying receptivity of the near-wall flow (e.g., boundary-layer flow) to acoustic waves
and the problem of controlling the transition of the laminar flow to the turbulent state. The degree of influence
of acoustic waves on the transition is well known (see, e.g., [1, 2]). It was experimentally found [3] that the most
pronounced effect of acoustic waves is observed in the vicinity of the leading edge. Apparently, the influence of
acoustic waves on generation of oscillations in the boundary layer from the viewpoint of interaction of the diffraction
acoustic field with the near-wall viscous flow was first considered in [4]. To verify the conclusions of Fedorov and
Khokhlov [4], Semionov et al. [5] performed experiments where the plate experienced the action of sound from
below, and the disturbances were measured in the boundary layer on the upper side shadowed by the acoustic field.
Thus, the interaction could proceed with the diffraction wave only. At large distances from the leading edge of the
plate, the diffraction wave on the boundary-layer edge degenerates into longitudinal acoustic waves whose fronts
can be inclined at different angles to the leading edge of the plate [6]. The intensity of the diffraction wave was low
and was not measured in the experiments [5]. At the same time, it was shown [6] that longitudinal acoustic waves
can excite high-intensity oscillations in the boundary layer. As a result, low-intensity diffraction waves can generate
noticeable oscillations of the flow inside the boundary layer. This circumstance can be responsible for the significant
effect of the acoustic field in the vicinity of the leading edge on boundary-layer oscillations at large distances from
the leading edge.

As was already noted, it is impossible to identify and measure the amplitude of the diffraction wave in
experiments, and it is assumed to be given in computations [6]. Therefore, it does not seem possible at the moment
to directly compare the theory and experimental data.
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Fig. 1. Layout of the experiment: 1) basic plate; 2) source of sound; 3) Mach line;
4) acoustic field; 5) diffraction zone.

A scheme for calculating the diffraction-wave intensity on the basis of mass-flow fluctuations in the acoustic
field at the level of the upper surface of the plate upstream of the latter is proposed in the present paper.

2. Figure 1 shows the schematic of acoustic irradiation of a flat plate in a supersonic flow. The origin x = 0
coincides with the leading edge of the plate. The z axis is directed along the leading edge perpendicular to the
plane (x, y). The acoustic beam is constricted in the z direction, i.e., its intensity rapidly decreases as |z| → ∞. The
problem includes determining of diffraction-wave parameters on the basis of the distribution of disturbances in the
region x < 0. As was noted above, the problem was mainly posed to compare the experimental [5] and theoretical
[6] results. Note, the experiments [5] involved measurements of mass-flow disturbances at a given frequency in the
region x < 0 for y = 0. The measured results were subjected to the Fourier transform with respect to time t and
coordinate z. Thus, the experimental data can yield the distribution m̄1(ω, β, x, y = 0) for x < 0, where ω is the
frequency parameter and β is the wavenumber in the z direction.

The equations of the vortex-free gas dynamics for disturbances can be written as follows:
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∂z
,

dr

dt
= −

(∂u
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, (1)

∂u

∂y
=

∂v

∂x
,

∂u

∂z
=

∂w

∂x
,

∂v

∂z
=

∂w

∂y
, m1 = r + u, π = r + θ.

Here, u, v, and w are the velocity disturbances, π is the pressure, θ is the temperature, r is the density, M is the
free-stream Mach number, d/dt = ∂/∂t + ∂/∂x, m1(t, z, x, y) is the mass flow in the x direction, and γ is the ratio
of specific heats. The last relation in (1) was derived from the equation of state. All parameters of the flow and
acoustic wave are normalized to their free-stream values. In particular, the free-stream velocity is assumed to be
equal to unity. The characteristic linear scale L is not defined in detail at the moment, and the characteristic time
can be assumed to be t1 = U/L. It follows from the above-given relations that the mass flow satisfies the wave
equation

M2 d2m1

dt2
=

∂2m1

∂x2
+

∂2m1

∂y2
+

∂2m1

∂z2
.

Using the direct and inverse Fourier transforms, we find

m̄1(ω, β, x, y) =
1√
2π

∞∫
−∞

2
T

( T∫
0

m1(t, z, x, y) exp (−iβz + iωt)
)

dt dz,

m1(t, z, x, y) =
1√
2π

∞∫
−∞

∞∫
−∞

m̄1(ω, β, x, y) exp (iβz − iωt) dω dβ.

(2)
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Substituting the last expression into the wave equation, we obtain

M2
(
− iω +

∂

∂x

)2

m̄1 = −β2m̄1 +
∂2m̄1

∂x2
+

∂2m̄1

∂y2
. (3)

Let us show that the mass flow in the region x > 0 for y = 0 can be determined from its gradient:

m̄1(x, y = 0) = − 1√
M2 − 1

∞∫
0

∂m̄1(x− x̄)
∂y

J0(ax̄) exp (iα0x̄) dx̄. (4)

Here, J0 is the zeroth-order Bessel function, α0 = M2ω/(M2−1), a2 = a2
0 +β2/(M2−1), and a2

0 = M2ω2/(M2−1)2.
Let ∂m̄1/∂y = F (x, y) be a known function. We integrate this function in terms of y from zero to infinity,

taking into account that m1 equals zero at infinity. Then, we have m̄1(x, 0) = −
∞∫
0

F dy. It is known that the

acoustic field at an arbitrary point (x, y) can be reconstructed if it is given at the line y = y0 = 0. In [7], the
corresponding relation was obtained in the form

F (x, y) = F (x− k, 0) exp (iα0k)−
∞∫

k

F (x− x̄, 0) exp (iα0x̄)ak√
x̄2 − k2

J1(a
√

x̄2 − k2) dx̄,

where k = y
√

M2 − 1. Thus, we have

m1(x, 0) = m1 + m2, m1 = − 1√
M2 − 1

∞∫
0

F (x− k, 0) exp (iα0k) dk,

m2 =
1√

M2 − 1

∞∫
0

∞∫
k

F (x− x̄, 0)√
x̄2 − k2

exp (iα0x̄)akJ1(a
√

x̄2 − k2) dx̄ dk.

By changing the order of integration, we obtain

m2 = − 1√
M2 − 1

∞∫
0

F (x− x̄, 0) exp (iα0x̄)
[ ax̄∫

0

J1(z) dz
]
dx̄

= − 1√
M2 − 1

∞∫
0

F (x− x̄, 0) exp (iα0x̄)(J0(ax̄)− 1) dx̄.

With allowance for the relation

1√
M2 − 1

∞∫
0

F (x− x̄, 0) exp (iα0x̄) dx̄ = −m1,

we obtain the expression

m̄1(x, 0) = − 1√
M2 − 1

∞∫
0

F (x− x̄, 0)J0(ax̄) exp (iα0x̄) dx̄,

which coincides with Eq. (4).
We find the derivative ∂m̄1(x, 0)/∂y for x < 0 under the assumption that the mass-flow distribution in this

region is known. In experiments, it is measured directly. For x > 0, we assume that m̄1 = 0, which is possible
because the disturbances on the plate surface do not affect the region x < y/

√
M2 − 1. In addition, let m̄1 = 0 in

the region x < −L. Applying the direct and inverse Fourier transforms, we obtain

¯̄m1(ω, β, α, y) =
1√
2π

∞∫
−∞

m̄1(ω, β, x, y) exp (−iαx) dx,

204



m̄1(ω, β, x, y) =
1√
2π

∞+iδ∫
−∞+iδ

¯̄m1(ω, β, α, y) exp (iαx) dα.

(5)

As m̄1 = 0 for x < −L and x > 0, ¯̄m1(ω, β, α, y) is an analytical function in the entire range of α. Substituting the
last expression into Eq. (3), we obtain

M2(−iω + iα)2 ¯̄m1 = −(β2 + α2) ¯̄m1 +
d2 ¯̄m1

dy2
. (6)

Thus, we have

¯̄m1(ω, β, α, y) = ¯̄m1(ω, β, α, 0) exp (iλ),

where the expression

λ = ±
√

M2(α− ω)2 − α2 − β2 = ±
√

M2 − 1
√
−a2 + (∆α)2 (∆α = α− α0)

follows from (6), and the sign is chosen to ensure decay as y →∞ (see [7]). Therefore, we have

m̄1(ω, β, x, y) =
1√
2π

∞+iδ∫
−∞+iδ

¯̄m1(ω, β, α, 0) exp (iλy + iαx) dα.

On the basis of the accepted assumptions, we can determine the derivative ∂m̄1(x, 0)/∂y in the region x < 0. We
have

∂m̄1(ω, β, x, 0)
∂y

=
1√
2π

∞+iδ∫
−∞+iδ

iλ ¯̄m(ω, β, α, 0) exp (iαx) dα. (7)

Let us show that ∂m1/∂y
∣∣∣
y=0,x>0

= 0 on the plate surface. It follows from system (1) that

d

dt

(∂r

∂y

)
= −

(∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)
= −∆v,

d

dt

(∂π

∂y

)
= −γ∆v.

Thus, we have

1
γ

d

dt

(∂π

∂y

)
=

d

dt

(∂r

∂y

)
,

d

dt

(∂m1

∂y

)
=

d

dt

(∂r

∂y

)
+

d

dt

(∂u

∂y

)
=

1
γ

d

dt

(∂π

∂y

)
+

d

dt

(∂v

∂x

)
,

d

dt

(∂m1

∂y
− 1

γ

∂π

∂y
− ∂v

∂x

)
= 0.

Since
1
γ

∂π

∂y
= −M2 dv

dt
,

we obtain
d

dt

(∂m1

∂y
+ M2 dv

dt
− ∂v

∂x

)
=

dΨ
dt

= 0

or
∂Ψ
∂t

+
∂Ψ
∂x

= 0.

The solution of the last equation is the function Ψ = Ψ(x − t). However, Ψ(t) = 0 at x = −∞; hence, Ψ = 0 at
t =∞ and, as a consequence,

∂m̄1

∂y
= −(M2 − 1)

∂v̄

∂x
−M2 ∂v̄

∂t
. (8)
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Since the normal velocity on the plate surface equals zero, we have ∂m̄1/∂y
∣∣∣
y=0

= 0. Thus, with allowance for

Eq. (7), the mass-flow gradient for y = 0 is set in the entire range of x except for x = 0.
Let us assume, however, that ∂m/∂y is set along the entire x axis including the point x = 0. As is shown

below, this assumption allows us to solve the problem being posed.
The normal component of velocity has a discontinuity at x = 0; therefore, relation (8) can be taken in the

form ∂m̄1(x, 0)/∂y = −(M2 − 1) ∂v̄/∂x. With allowance for ∂m̄1(x)/∂y = 0 for x > 0, equality (4) acquires the
form

m̄1(x, y = 0) = lim
ε→0

[
− 1√

M2 − 1

∞∫
x+ε

∂m̄1(x− x̄)
∂y

J0(ax̄) exp (iα0x̄) dx̄

− (M2 − 1)v̄(−ε, 0)J0(ax) exp (iα0x)
]
. (9)

We substitute Eq. (7) into the first term in the right side of Eq. (9). (Note, the discontinuity of the mass-flow
gradient is taken into account by the second term.) As a result, we obtain

m1(ω, β, x, 0) = − 1√
M2 − 1

1√
2π

∞∫
x

[ ∞+iδ∫
−∞+iδ

iλ ¯̄m exp [iα(x− x̄)] dα
]
J0(ax̄) exp (iα0x̄) dx̄

= − 1√
M2 − 1

1√
2π

∞+iδ∫
−∞+iδ

[
iλ exp (iαx) ¯̄m

∞∫
x

J0(ax̄) exp [i(α0 − α)x̄] dx̄
]
dα.

For δ < 0, the integral over x̄ exists. Therefore, the integrand is an analytical function of the variable α

in the lower half-plane. Closing the integration contour in the range of negative values of δ, we obtain m̄1 = 0.
This obviously follows from the analysis of the region of discontinuity of the gradient ∂m/∂y. For the formal
acoustic beam, it was a priori assumed that m̄1(x) = 0 in the region x > 0. It was under this assumption that
the transformation ¯̄m(α) was obtained. Thus, the mass-flow fluctuations along the plate are completely determined
by the discontinuity of the normal component of velocity disturbances at the plate edge. Let us find the relation
between the normal component of velocity v̄(x) upstream of the plate edge and the mass-flow distribution in the
region x < 0. Relation (8) on the line y = 0 yields the differential equation

m̄0
y(x) = −(M2 − 1)

∂v̄0

∂x
−M2 ∂v̄0

∂t
.

Applying the direct and inverse Fourier transforms [similar to (2) and (5)] to v̄0, with allowance for Eq. (6), we
obtain

¯̄v0(α) = − 1
M2 − 1

λ(α) ¯̄m(α)
α− ωM2/(M2 − 1)

,

v̄0(x = 0) = − 1√
2π(M2 − 1)

∞+iδ∫
−∞+iδ

λ(α) ¯̄m(α) dα

α− ωM2/(M2 − 1)
.

For each (upper or lower) half-plane of α, we can choose the branch of λ satisfying the condition Im (λ) = 0. In
this case, the integrand in each half-plane is analytical. For certainty, we choose the upper half-plane of α (δ > 0).
Directing δ to zero and avoiding the singular point, we obtain

v̄0(0) =
√

π/2 iλ(α0) ¯̄m(α0)/(M2 − 1).

Note, processing of experimental data often involves the Fourier transform in the form

m̃ =

∞∫
−∞

m̄1 exp (−iαx) dx,
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i.e., m̃ =
√

2π ¯̄m. In addition, the following condition is valid for disturbances decaying at infinity: λ(α0)
= ia

√
M2 − 1. Therefore, the dependence of the mass flow on x [see the second term in the right side of Eq. (9)]

can be written as

m̄1(x, β, ω) = −(1/2)a
√

M2 − 1 m̃(α0)J0(ax) exp (iα0x). (10)

Taking into account the asymptotic behavior of the Bessel function at large values of x, we convert Eq. (10) to the
form

m̄1(x, β, ω) ≈ −1
2

√
M2 − 1 m̃(α0)

√
a

2πx

{
exp

[
i
(
α1x−

π

4

)]
+ exp

[
i
(
α2x +

π

4

)]}
, (11)

where α1,2 = α0 ∓ a. Using the expressions for α0 and a and Eq. (4), we can show that α1,2 = ωM̄/(M̄∓ 1), where
M̄ = Mcos χ and χ = arctan (β/α1,2).

Thus, the intensity of mass-flow fluctuations decreases with increasing distance from the leading edge and
can vary depending on orientation of the initial wave, whereas the latter depends on the spectrum of m̃(α, ω, β)
over β and on the magnitude of a, which increases with increasing β. Formulas (10) and (11) establish the relation
between the mass flow in the region x > 0 with its distribution in the region x < 0.
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